Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Yi Cao, Jian Zhang, Yao Kang, Jian-Kai Cheng, Zhao-Ji Li, Xiao-Qin Wang and Yuan-Gen Yao*

The State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.089$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[[(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ cobalt(II)]-μ_{3}-5-hydroxyisophthalato- $\left.\kappa^{4} O, O^{\prime}: O^{\prime \prime}: O^{\prime \prime \prime}\right]$ monohydrate]

The title compound, $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, is isostructural with its manganese analog [Skakle, Foreman \& Plater (2001). Acta Cryst. E57, m373-m375]. The asymmetric unit consists of one Co atom, one 1,10-phenanthroline ligand bound in a bidentate manner, one hydroxyisophthalate ligand and one water molecule. The Co coordination is completed by two further O atoms from two symmetry-related hydroxyisophthalate ligands, giving a grossly distorted octahedral geometry.

Comment

The title compound, (I), was synthesized by the hydrothermal reaction of 5-hydroxyisophthalic acid with 1,10 -phenanthroline (phen) and cobalt acetate. The asymmetric unit consists of one Co atom, one phen ligand bound in a bidentate manner, one hydroxyisophthalate ligand and one water molecule. The Co coordination is completed by two further O atoms from two symmetry-related hydroxyisophthalate ligands, giving a grossly distorted octahedral geometry. 5-Hydroxyisophthalate acts as a tetradentate ligand in this structure, with one carboxylate group acting as bidentate to one Co atom and the two remaining O atoms acting as monodentate to two further Co atoms. The $\mathrm{Co}-\mathrm{O}$ distances range from 2.0421 (12) to 2.2523 (13) \AA and the $\mathrm{Co}-\mathrm{N}$ distances are 2.1044 (13) and 2.1161 (13) Å.

(I)

In the structure of (I), one-dimensional chains are formed by the cobalt cations and the carboxylate ligands; these chains are linked by a hydrogen-bonding network consisting of the phenol OH group, carboxylate O atoms and the water molecule, forming two-dimensional sheets. This arrangement is also seen in the isostructural manganese analog (Skakle et al., 2001) and the related $\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(2,2^{\prime} \text {-bipyridyl }\right)\right]_{n} \cdot n \mathrm{H}_{2} \mathrm{O}$ structure (Plater et al., 2001).

Experimental

5-Hydroxyisophthalic acid $(0.091 \mathrm{~g}, 0.5 \mathrm{mmol})$, cobalt(II) acetate tetrahydrate $(0.125 \mathrm{~g}, \quad 0.5 \mathrm{mmol}), ~ 1,10$-phenanthroline $(0.102 \mathrm{~g}$, $0.57 \mathrm{mmol})$, sodium carbonate ($0.081 \mathrm{~g}, 0.76 \mathrm{mmol}$) and water (16 ml) were sealed in a 25 ml stainless-steel reactor with a Teflon liner. The reaction system was heated at 433 K for 60 h . Slow cooling of the system to room temperature yielded red prismatic crystals of the complex, which were collected by filtration.

Received 2 March 2004 Accepted 18 March 2004 Online 27 March 2004

Figure 1
The structure of (I). Displacement ellipsoids are plotted at the 50% probability level. H atoms have been omitted for clarity [symmetry codes: (a) $2-x, 1-y, 2-z$; (b) $\left.x-\frac{1}{2}, 1-y, z-\frac{1}{2}\right]$.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=437.26$
Monoclinic, $P 2 / n$
$a=8.5218(10) \AA$
$b=12.0440(10) \AA$
$c=17.028$ (2) A
$\beta=101.599(5)^{\circ}$
$V=1712.0(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.697 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4790 \\
& \quad \text { reflections } \\
& \theta=1.7-28.3^{\circ} \\
& \mu=1.05 \mathrm{~mm}^{-1} \\
& T=130(2) \mathrm{K} \\
& \text { Prism, red } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.734, T_{\text {max }}=0.811$
13723 measured reflections

Refinement

Refinement on F^{2}
4248 independent reflections
4069 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 16$
$l=-13 \rightarrow 22$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.089$
$S=1.05$
4248 reflections
270 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
Drawing showing the one-dimensional chains of (I). H atoms and solvent water molecules have been omitted for clarity.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{OW} 1^{\mathrm{i}}$	0.82	2.10	2.6302 (18)	122
$\mathrm{OW} 1-\mathrm{H} W 1 \mathrm{~B} \cdots \mathrm{O} 1$	0.75 (3)	2.30 (3)	2.8988 (19)	138 (3)
$\mathrm{O} W 1-\mathrm{H} W 1 A \cdots \mathrm{O} 4^{\text {ii }}$	0.87 (4)	1.92 (4)	2.7740 (19)	165 (3)

Symmetry codes: (i) $3-x, 1-y, 2-z$; (ii) $x-\frac{1}{2}, 1-y, z-\frac{1}{2}$.

H atoms bonded to C atoms and the phenolic H were placed in calculated positions and included as part of a riding model, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ of the parent atoms. Water H atoms were located from difference maps and refined freely.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China under project Nos. 29733090 and 20173063, the State Key Basic Research and Development Plan of China (No. 001CB108906), Key Project in KIP of CAS (No. KJCX2-H3) and the NSF of Fujian Province (No. E0020001).

References

Plater, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., McWilliam, S.
A., Coronado, E. \& Gomez-Garcia, C. J. (2001). Polyhedron, 20, 2293-2303. Sheldrick, G. M. (1996). SADABS. Univerity of Göttingen, Germany.
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skakle, J. M. S., Foreman, M. R. St J. \& Plater, M. J. (2001). Acta Cryst. E57, m373-m375.

